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The Model

We model a grayscale image by a function f : Ω ⊂ R2 → [0, 1] and
we consider g := f + n, with n a Gaussian noise.

We propose the following model to denoise g :

Model (denoising)

inf
u∈BV(Ω)

1

2

∫
Ω
α(x)(u − g)2 dx +

∫
Ω
λ(x)|Du|,

where,

BV(Ω) is the space of functions with bounded variations,

Du is the total variation (measure),

α, λ : Ω → R+ are parameters.

Thomas Jacumin and Andreas Langer Adaptive Finite Differences Method and Parameter Selection for Total Variation Minimization



The Model

We model a grayscale image by a function f : Ω ⊂ R2 → [0, 1] and
we consider g := f + n, with n a Gaussian noise.
We propose the following model to denoise g :

Model (denoising)

inf
u∈BV(Ω)

1

2

∫
Ω
α(x)(u − g)2 dx +

∫
Ω
λ(x)|Du|,

where,

BV(Ω) is the space of functions with bounded variations,

Du is the total variation (measure),

α, λ : Ω → R+ are parameters.

Thomas Jacumin and Andreas Langer Adaptive Finite Differences Method and Parameter Selection for Total Variation Minimization



Goals

Goals

solve the minimization problem,

propose an automatic parameters (α, λ) selection.

We want to regularize more on the homogeneous parts and to
be close to the data on the edges of the image.
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Solve the Problem

Iterative algorithm : Chambolle-Pock/Semi-smooth Newton.

Discretization : Adaptive finite differences method (AFDM).

Question

Why AFDM instead of FEM?

Mesh adaptivity : error indicator

ηh := (uh − g)2,

and a bulk criterion (windowing technique + statistical
argument) to determine the presence of noise or of edges.
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Automatic Parameters Selection

α adaptivity : when we refine an element, we increase α on
the new elements.

λ adaptivity : with AFDM, the value of the discrete TV is
mesh-dependent i.e. the balance between the data-fitting
term and the TV change over the iteration. We compensate
this change by changing λ.
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(a) Original image f (b) Mesh (c) α

(d) Noisy image g (e) λ (f) Reconstruction u

Thomas Jacumin and Andreas Langer Adaptive Finite Differences Method and Parameter Selection for Total Variation Minimization



(a) Original image f (b) Mesh (c) α

(d) Noisy image g (e) λ (f) Reconstruction u

Thomas Jacumin and Andreas Langer Adaptive Finite Differences Method and Parameter Selection for Total Variation Minimization



Future research :

add a L1 data-fitting term to deals with impulse noise,

add coarsening of the mesh,

have elements smaller than 1 pixel to enforce the
discontinuities,

zooming, deblurring, computing optical flow.

Thanks for your attention!
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