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The aim is to study an adaptive finite differences scheme as presented in the paper of Oberman and Zwiers
[5]. The difference here is that our dofs (degrees of freedom) are located in the middle of the elements and not
on the corners, allowing us to mimic the piecewise constant functions space found in the finite element methods.
We consider a quad-mesh and add constraints on it such that our adaptive finite differences can be computed at
every node of the mesh [2, Chapter 14]. We denote in the following dx, dy > 0 the width and the height of an element.

We use the usual finite differences for regular nodes [4, 3]. We set xE = x+ dx and yE = y (see Figure 1).
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Figure 1: Illustration of a regular node with u := u(x, y), uE := u(xE, yE).

We apply a Taylor expansion [6, Appendix A] around (x, y), and we get,

u(xE, yE) = u(x, y) + dx ∂xu(x, y) +O(dx2).

Then, we have the forward x-derivative of u at (x, y), given by,

∂xu(x, y) =
u(xE, yE)− u(x, y)

dx
+O(dx).

Similarly, we have the forward y-derivative of u at (x, y),

∂yu(x, y) =
u(xS, yS)− u(x, y)

dy
+O(dy).

Now, we deal with the 3 different cases for the dangling nodes. Start with the first one, that we call dangling 1.
For convenience, we set xNE = xSE := x+ 3

4dx, yNE := y − 1
4dy, and ySE := y + 1

4dy (see Figure 2).
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Figure 2: Illustration of a dangling node 1 with u := u(x, y), uNE := u(xNE, yNE), uSE := u(xSE, ySE) and u′ =
1
2 (uNE + uSE).

We apply a Taylor expansion, and we get,

u(xNE, yNE) = u(x, y) +
3

4
dx ∂xu(x, y)−

1

4
dy ∂yu(x, y) +O(dx2 + dy2),

u(xSE, ySE) = u(x, y) +
3

4
dx ∂xu(x, y) +

1

4
dy ∂yu(x, y) +O(dx2 + dy2).

We sum,

u(xNE, yNE) + u(xSE, ySE) = 2u(x, y) + 2
3

4
dx ∂xu(x, y) +O(dx2 + dy2)

Then, we have the forward x-derivative of u at (x, y), given by,

∂xu(x, y) =
u(xNE,yNE)+u(xSE,ySE)

2 − u(x, y)

(3/4) dx
+O

(
dx+

dy2

dx

)
.

Similarly, we have the forward y-derivative of u at (x, y),

∂yu(x, y) =
u(xSW,ySW)+u(xSE,ySE)

2 − u(x, y)

(3/4) dy
+O

(dx2

dy
+ dy

)
.

For the dangling node 2, we set xN := x, yN := y − dy, xE := x+ 3
2dx and yE := y − 1

2dy (see Figure 3).
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Figure 3: Illustration of a dangling node 2 with u := u(x, y), uE := u(xE, yE), uN := u(xN, yN) and u′ = 2uE − uN.

We apply a Taylor expansion, and we get,

u(xN, yN) = u(x, y)− dy ∂yu(x, y) +O(dy2),

u(xE, yE) = u(x, y) +
3

2
dx ∂xu(x, y)−

1

2
dy ∂yu(x, y) +O(dx2 + dy2).

We sum,
u(xN, yN)− 2u(xE, yE) = −u(x, y)− 3dx ∂xu(x, y) +O(dx2 + dy2).
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Then, we have the forward x-derivative of u at (x, y), given by,

∂xu(x, y) =
2u(xE, yE)− u(xN, yN)− u(x, y)

3 dx
+O

(
dx+

dy2

dx

)
.

Similarly, we have the forward y-derivative of u at (x, y),

∂yu(x, y) =
2u(xS, yS)− u(xE, yE)− u(x, y)

3 dy
+O

(dx2

dy
+ dy

)
.

For the dangling node 3, we set xS := x, yS := y + dy, xE := x+ 3
2dx and yE := y + 1

2dy (see Figure 4).
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Figure 4: Illustration of a dangling node 3 with u := u(x, y), uE := u(xE, yE), uS := u(xS, yS) and u′ = 2uE − uS.

We apply a Taylor expansion, and we get,

u(xS, yS) = u(x, y) + dy ∂yu(x, y) +O(dy2),

u(xE, yE) = u(x, y) +
3

2
dx ∂xu(x, y) +

1

2
dy ∂yu(x, y) +O(dx2 + dy2).

We sum,
u(xS, yS)− 2u(xE, yE) = −u(x, y)− 3dx ∂xu(x, y) +O(dx2 + dy2).

Then, we have the forward x-derivative of u at (x, y), given by,

∂xu(x, y) =
2u(xE, yE)− u(xS, yS)− u(x, y)

3 dx
+O

(
dx+

dy2

dx

)
.

Similarly, we have the forward y-derivative of u at (x, y),

∂yu(x, y) =
2u(xS, yS)− u(xW, yW)− u(x, y)

3 dy
+O

(dx2

dy
+ dy

)
.

To Do

• Using Taylor expansion [6, Appendix A], find the 1d finite differences scheme of u′(x) and u′′(x) (explain the
Landau notation).

• Write [3] the discretization on uniform grid in 1d of

−αu′′(x) + u(x) = f(x),

with α > 0.

• Implement it with DUNE [1] and solve it numerically.
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• Write the discretization on uniform grid in 2d of

−α div(∇u) + u = f.

• Compute the y-derivative for the adaptive finite differences method.

• Create on DUNE an adaptive quad-mesh with small elements near the edges of f (i.e. where |∆f | is large).

• Implement the AFDM in DUNE and solve numerically

−α div(∇u) + u = f,

on the adaptive mesh.

References

[1] M. Blatt, A. Burchardt, A. Dedner, Ch. Engwer, J. Fahlke, B. Flemisch, Ch. Gersbacher, C. Gräser, F. Gruber,
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